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THE EFFECT OF A MAGNETIC FIELD ON FREE 

CONVECTION HEAT TRANSFER 
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Abstract-Free convection heat transfer due to the simultaneous action of buoyancy and induced 
magnetic forces is investigated. The analysis is carried out for laminar boundary-layer flow about an 
isothermal vertical plate. It is found that the free convection heat transfer to liquid metals may be 
significantly affected by the presence of a magnetic field; but that very small effects are experienced by 

other fluids. 

R&sum&-Cet article Ctudie la transmission de chaleur par convection libre rCsultant de l’action 
simultanee des forces de convection naturelle et de forces magnktiques induites. L’Btude a CtB faite 
pour un &coulement de couche limite laminaire sur une plaque verticale isotherme. On a trouvC 
que, pour des mCtaux liquides la transmission de chaleur par convection libre pouvait ttre notable- 
ment affectee par la pr&nce d’un champ magnetique; avec d’autres fluides ces effets sont tr&s petits. 

Zusammenfassung-Es wurde der Wtirmeiibergang durch freie Konvektion bei gleichzeitiger Ein- 
wirkung von Auftriebs- und induzierten magnetischen KrLften untersucht, und zwar fiir die laminare 
Grenzschicht an der senkrechten isothermen Platte. Es zeigt sich ein starker Einfluss des Magnetfeldes 
auf den Wgrmeiibergang bei fliissigen Metallen, bei anderen Fliissigkeiten dagegen nur ein sehr 

geringer. 

AaHoTaunsI-B CTRTbe PaCCMaTpmBaeTCH nepenoc Tenna IIOA A'ZtiCTBlieM CB060AH08 
KOHB~K~M~IIIZHA~~YI~OB~HHO~OM~~HCITHO~O~O~~.~CC~3~~~TCR~~M~H~~H~~~O~~~HEi~HblZt 

CJIOn BOKPJ'r I430TepMWECKOti BepTHKaJIbHOfi IIJIaCTIUIbI. YCTdHOB&5'HO, YTO Ha WE!peHOC 

TI?IIJIEl rIpPI CBO6OAHOti KOHBeKqHH B WHAK&lX MeTt-lJLnaX CJ'II@CTBL'HHO BJIMRPT HaJIWIHe 

MkWHklTHOrO IIOJIH, B TO BpeMfl KaK Ha ApylWe FKHRKOCTLI BJIllHHEle MarHCiTHOI'O IIOJIH 

He6OnbUIOe. 

NOMENCLATURE 

magnetic induction vector; 
externally imposed y-component of B; 
induced magnetic force; 
x-component of F; 

transformed stream function equation 
(10); 
functions of 7; 
Grashof number, gfilTw - Tmjx3/v2; 
acceleration due to gravity; 
current density vector ; 
thermal conductivity; 

* Professor of Mechanical Engineering, Heat Transfer 
Laboratory, University of Minnesota, Minneapolis, 
Minnesota, U.S.A. 

Y, 

Prandtl number, v/a; 

overall rate of heat transfer; 
Q in absence of magnetic field ; 
local rate of heat transfer per unit area; 
q in absence of magnetic field; 
static temperature; Tm, ambient tem- 
perature; T,, wall temperature; 
AT=T,- To,; 
velocity component in x direction; 
velocity vector; 
velocity component in y direction; 
co-ordinate measuring distance from 
leading edge ; 
co-ordinate measuring distance normal 
to plate. 

t Associate Professor of Engineering, State University 
of New York, Long Island Center, Oyster Bay, New Greek symbols 
York, U.S.A. a, thermal diffusivity; 
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thermal expansion coefficient, 
-l/P @P/a%; 

similarity variable, equation (9a); 
dimensionless temperature, 

(T- T*~/(T~ - T,); 
functions of ‘I; 
kinematic viscosity; 
magnetic parameter, equation (9b); 
density; 
electrical conductivity; 
stream function. 

and the corresponding heat transfer should be 
decreased relative to the case of pure free 
convection. 

INTRODUCTION 

There is an interesting distinction between the 
present problem and others involving magneto- 
hydrodynamic effects in forced convection boun- 
dary layers. In the latter situation, induced 
magnetic forces may modify the free stream 
flow and in turn, this may effect the external 
pressure gradient or the free stream velocity 
which is imposed on the boundary layer. Thus, 
a complete boundary-layer solution would 
involve a magnetohydrodynamic solution for the 
inviscid free stream (for example, see Refs. 
1 and 2). In some cases, the interaction between 
the free stream flow and the magnetic field has 
been treated in an incomplete manner, giving 
rise to an ambiguity in the boundary-layer 
results [3]. On the other hand, in the free 
convection problem, the velocity is zero in the 
ambient fluid and induced magnetic forces do 
not exist there. Consequently, the influence of 
the magnetic field on the boundary layer is 
exerted only through induced forces within the 
boundary layer itself, with no additional effects 
arising from the free stream pressure gradient. 
As a consequence, the free convection problem 
may be formulated in a simpler and perhaps 
more exact manner than the forced convection 
problem. 

IT IS common to classify buoyancy forces and 
induced magnetic forces among the body forces 
which may occur in fluid mechanics problems. 
The separate action of each of these forces in 
estabIishing and modifying fluid flows has been 
studied rather extensively. In the present 
investigation, consideration is given to the situa- 
tion where buoyancy and magnetic forces act 
simultaneously. 

The specific problem selected for study is the 
flow and heat transfer in an electrically-con- 
ducting fluid adjacent to an isothermal vertical 
plate. The configuration is pictured schematically 
in Fig. 1. The plate surface is maintained at a 
uniform temperature T, which may either 
exceed the ambient temperature Ta, Fig. l(a), 
or may be less than T,, Fig. l(b). When 
T,, > T,, an upward flow is established along 
the plate due to free convection; while when 
T,, < Tm, there is a downflow. Additionally, a 
magnetic field B, acts normal to the plate surface. 
The interaction of the magnetic field and the 
moving electric charge carried by the flowing 
fluid induces a force which tends to oppose the 
fluid motion. Consequently, the resultant flow 

~~~~~ GraYy 30~R 

(of Tw>r, (b) Tw< T, 

FIG. 1. Physical model and co-ordinates. 

The analysis is carried out for the case of 
uniform surface temperature Tu, and uniform 
imposed magnetic field B, (independent of x). 
These conditions do not lead to a similar solu- 
tion of the laminar boundary-layer equations. 
Therefore, solutions of the governing equations 
have been obtained utilizing a series expansion 
method. At the time this study was carried out, 
there were no analyses of the magnetohydro- 
dynamic free convection problem in the readily- 
available literature. During the process of 
review by the Journal, some additional references 
were brought to the attention of the authors. 
The magnetohydrodynamic free convection 
problems considered therein are complementary 
but different from the situation considered here. 
In Ref. 4 the isothermal vertical plate is analyzed 
under the assumption that the imposed magnetic 
field B, varies as x-lip. This is the condition 
required to achieve a similarity boundary layer. 
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Approximate solutions were obtained by the 
K~rrn~n-Poh~hausen integral method. Refs. 
5 and 6 also consider similarity-type solutions. 
In Ref. 5, the isothermal wall case is solved 
numerically for various Prandtl numbers and 
magnetic parameters and additionally, asymp- 
totic solutions are given. Ref. 6 explores the 
relations~p between the x-dependence of wall 
temperature and imposed magnetic field which 
provides similarity conditions, but numerical 
results are not given. An imposed field B, 
varying as xllQ along an isothermal plate was 
considered in Ref. 7. This did not lead to a 
similarity-ty~ boundary layer and a series 
expansion method was utilized. The results of 
Ref. 7 are somewhat in doubt inasmuch as an 
error was discovered in one of the governing 
differential equations [5]. 

ANALYSIS 

The starting point of the analysis is the basic 
conservation laws of mass, momentum, and 
energy. To obtain the mathematical statement of 
these laws, we utilize the well-known governing 
equations for free convection (for example, 
p. 327 of Ref. 8) to which are added terms appro- 
priate to the magnetic effects. Characterizing the 
induced magnetic force by F, we write 

mass: 

momentum : 

energy : 
(2) 

dT i3T @CT 
U a; f V .,+ = a >gp . (3) 

The plus-minus sign has been attached to the 
buoyancy force g/3@ - T,) so that the equations 
are valid for both the upflow and downflow 
situations pictured on Fig. I(a) and l(b) respec- 
tively. Fluid property variations have been 
considered only to the extent of a density 
variation which provides a buoyancy force. 
Viscous dissipation has been neglected in the 

energy equation (3). Further, since the Joule 
heating (electrical dissipation) is usually the 
same order as the viscous dissipation, it too 
has been neglected. 

The magnetic force F may, in the absence of 
excess charges, be written as [9] 

F- JxB (4) 

where J and B are respectively the current 
density and magnetic induction vectors. Further, 
when the external electric field is zero and the 
induced electric field negligible, the current 
density is related to the velocity by Ohm’s Law 
as follows 

J = a(V x B) (5) 

where g denotes the electrical conductivity of the 
fluid. Next, under the condition that the mag- 
netic Reynolds number is small, the induced 
magnetic field is negligible compared with the 
applied field. This condition is usually well 
satisfied in terrestrial applications, especially so 
in (low-velocity) free convection flows. So, we 
write 

B = i, B,. (6) 

Bringing together equations (4), (5), and (6), 
the force component F, is found to be 

F, = --auB2, (7) 

and this may then be introduced into the momen- 
tum equation (2). 

The specification of the boundary conditions 
is necessary to complete the statement of the 
problem. At the surface, the velocities are zero 
to satisfy the conditions of no slip and an 
impermeable wall. In addition, temperature 
contin~ty requires that fluid and solid share the 
same temperature. Far from the surface, the 
velocity approaches zero and the temperature 
approaches that of the surroundings. Formally, 
these conditions may be stated as 

u=v=o 

I_=,,;const),=O ~I~~~y+~* @) 

Having thus completed the statement of the 
problem, attention may next be directed toward 
finding a solution. The first thought would be to 
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seek a similarity solution; that is, to seek a form 
of solution in which the velocity and temperature 
profiles maintain a similar shape at all values 
of position x. Mathematically speaking, the 
desirable property of such a solution is that the 
governing equations (l), (2), (3), and (7) become 
ordinary differential equations. However, it is 
found that the conditions that B, and T, are 
both independent of x cannot be satisfied by a 
similarity solution. As a consequence, some other 
approach must be found. 

Series solution 
Previous experience with non-similar boun- 

dary layer problems suggests that a series 
solution might be useful in the present situation. 
To this end, the following new co-ordinates are 
introduced 

,$- 
2lrB;; 

p[gplT,,. - TmJ]172 x1’2 = (Gr/4)lj2 
eB%;/Pv (9b) 

where Gr is the Grashof number. The variable 7 
is immediately recognized as the free convection 
similarity variable. On the other hand, 6, which 
is essentially a stretched x co-ordinate, is an 
index to the relative importance of the magnetic 
forces. Next, new dependent variables f and 8 
are defined as 

(10) 

where $, the stream function, is related to the 
velocities u and v in the usual manner 

(11) 

This definition of # immediately satisfies the 
conservation of mass equation. 

We may then proceed to transform the con- 
servation of momentum and energy equations 
into the new co-ordinates. To facilitate the 
transformation, it is useful to have the velocity 
components explicitlv expressed in terms of the - I A 

These may be substituted into equations (12) 
and (13) and terms grouped according to powers 
of f. From this, there is obtained the governing 
equations for the,f,, 8,, fi, 8,, . . . as 

fo”’ $- 3 f&" - 2(,f0’)2 = - B0 7 

6;’ + 3Pr foe; == 0 (16) 
Jt 

new variables. From equation (11) in conjunc- 
tion with (10) and (9), there is obtained 

u = 2[gfilT,, - Tmj]“2 x1j2 ;; (12a) 

Ir = _ I64 gb21 Tu - TmI 11i4 
x1/4 

With these, and utilizing the definitions of 7, t, 
and 0 from equations (9) and (1 l), the conserva- 
tion equations (2) and (3) becomes 

momentum : 

energy : 

ae 
i 
af a0 

-3farl+2f a,ag- 
ae aj' 

.-- arl af 1 =ml a28. (13) 
Pr a72 

It may be noticed that in the absence of a mag- 
netic field, i.e. 5: = 0, these equations reduce to 
the standard free convection equations as first 
derived by Schmidt and Beckmann (p. 447 of 
Ref. 10). 

Notwithstanding their change in form, equa- 
tions (12) and (13) are, like their predecessors (2) 
and (3), partial differential equations. Tn order 
to reduce the problem to one involving more 
tractable ordinary differential equations, we 
expand the variables f and 0 in series as follows 
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where primes represent differentiation with 
respect to 71 and Pr denotes the Prandtl number. 

For computational purposes, the series were 
truncated after the B, andf, terms. Formulated 
in this way, the problem takes the form of a 
basic free convection flow upon which the effects 
of the magnetic held constitute a disturbance. 
From the numerical results to be shown later, 
it would appear that truncation after the second 
term is not a too serious restriction. 

The boundary conditions (8) may also be 
rephrased in terms of the new variables. Utilizing 
the velocity expressions (12) and the definition 
of 0, equation (lo), it is found that 

It may be seen that equation (16) and the 
corresponding boundary conditions (16a) coin- 
cide with the final ordinary differential equations 
for pure free convection. Numerical solutions of 
these equations covering the Prandtl number 
range 0.003 to 1000 have been tabulated in 
detail in Refs. 11 and 12. The computational 
task thus remaining for the present study was to 
solve equations (17) subject to the boundary 
conditions (17a). 

By inspection of these equations, it is seen 
that since fi and f?, appear in both equations, 
simultaneous solution is required. Ad~tionally, 
it is necessary to utilize the solutions of equations 
(16) as input data, since f& fO’, &“, and 6,& all 
appear in equations (17). Analytical solutions of 
equations (17) could not be found, and it was 
necessary to use numerical means. Solutions 
were carried out on an IBM 704 electronic 
digital computer for Prandtl numbers of 0.02, 
0.72, and 10. Input data for the lowest of these 
was taken from Ref. 12, while that for the 
higher Prandtl numbers came from Ref. 11. 
From the solutions, the essential information 
which is needed in the heat transfa computation 

T 

is (d~~~d~~~ =W These results are listed in Table 1, 
along with the values of ~d~~/d~)~=~ as taken 
from the references. 

Table 1. Temperature derivatives 

10 -1*169 1 0.125 -0-107 
0.72 -05046 j 00618 -0.123 
0.02 -0.1116 j 0.0152 -0.137 

I 

There are two aspects of these results which 
deserve mention. First is the fact that ~~(O)~~~(O) 
varies only slightly with Prandtl number over the 
very wide range considered here. This suggests 
that one may interpolate between or extrapolate 
beyond the tabulated results without fear of 
incurring large errors. The second relates to the 
small ma~itude of ~~(O)~~~(O~ - O-1. Hence, 
only with fairly large 5 values (e.g. -2) will the 
second term of the series begin to be important. 

.06 

0 
8 16 24 32 40 

FIG. 2. Variation of the function e,($. 
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Thus, even with truncation after the second term, 
the theory appears to be able to accommodate 
fairly large 5. Of course, small E values are 
accommodated without question. 

In addition to the tabulated temperature 
derivatives which will be used in the heat 
transfer computation, it appears worthwhile for 
the sake of completeness to give more detailed 
information on the new solutions which have 
been obtained. To this end, the functions #,($I 
and fi’(~) have been respectively plotted on Figs. 
2 and 3 for Prandtl numbers of 0.02, 0.72 and 
10. The 19, function is associated with the 
temperature distribution by equation (15); 
while the fi’ function is associated with the 
distribution of the velocity component u by 
equations (12a) and (14). The functions B,, and 
so’ which are additionally needed in the deter- 
mination of the temperature and velocity pro- 
files are given in Refs. 11 and 12. 

HEAT TRANSFER RESULTS 

The local rate of heat transfer flowing from 
the surface to the fluid may be calculated by 
Fourier’s Law 

(18) 

Utilizing the definitions of 0 and 17 from equations 
(10) and (9a), the expression’ for q 
rephrased as 

can be 

’ (19) 

Then, introducing the series expansion (15) for 
8, there is obtained 

[-e;(o) - [e;(o) - . . .] (20) 

In the absence of a magnetic field, the local heat 
transfer rate go is given by 

The effect of the magnetic field upon the heat 
flux is then obtained by combining equations 
(20) and (21), with the result 

(22) 
where 6 has been replaced according to equation 
(9b). 

In appraising the influence of the magnetic 
field, reference is made to the information 
listed in Table 1. Since 6~(0)~6~(0) is negative, it 
follows that the magnetic field reduces the heat 
transfer, as was expected on physical grounds. 
Additionally, it is seen that since e~(O)/~~(O~ is of 
the order of 0.1, the presence of the magnetic 
field is significant only if 

20B~x~‘~ _._-- ._e _l_ll_ 
PMlTw - TooII”~ 

is of the order of one or two. 
For 8 N sulphuric acid (1.9 mhos/in) under 

the reasonable conditions dT = 50°F and 
x = 1 ft, a magnetic field of 25 000 gauss would 
be required to have a significant effect on heat 
transfer. Such a magnetic field is exceedingly 
large and may be considered outside the range 
of ordinary laboratory practice. For salt water 
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(0.44 ~os~in), similar field stren~hs are re- 
quired to influence the heat transfer, and even 
larger fields would be needed for ordinary tap 
water. In the case of gases, electrical con- 
ductivities of technically-interesting magnitudes 
are not achieved until the gas temperatures are 
very high. For example, even at a temperature of 
5500°F and a density correspo~~ng to 100 000 
ft altitude (l/70 of standard sea level density), 
the electrical conductivity of air is only about 
IO-* mhos/in (Ref. 13, Fig. D, 34a). For these con- 
ditions, a magnetic field of perhaps 20 000 gauss 
is needed to significantly effect the free convec- 
tion heat transfer. The combination of such high 
temperatures and high magnetic fields is difficult 
to achieve and is not commonly encountered. 
Somewhat lower temperatures and smaller 
magnetic fields would be required if the air were 
seeded with potassium. 

At the other end of the scale from these 
iilustrations is the case of liquid metals. For 
liquid mercury (2.5 x lo* ~os/in), a 25 per 
cent reduction in the local heat flux can be 
achieved with a magnetic field of 1000 gauss for 
AT = 50°F and x = 3 in. Thus, it would seem 
that among all the fluids, the liquid metals 
appear to be most susceptible to the effects of a 
magnetic field. 

Thus far, consideration has been given to the 
local heat flux q. The overall rate of heat transfer 
Q from a section of plate from h: -- 0 to x = x 
may be calculated by integrating as follows 

Q = f;qdx, (23) 

Substituting for q from equation (20) and noting 
that Grli4 - ~$1~ and 5 - XI/~, there is obtained 

Q --- ^--- 
ic?O 

1 + 3 @X0> 

[ I 

2u3; 
s e,(o) p[g/?lT, - T,/]l’a X1’2 + - * * (24) I 

where Q,, the overall heat flux for pure free 
convection, is given by 

up Q. = ; k(T;, - Tm) [-%@)I. (25) 

By comparing equations (22) and (24), it is 
seen that the presence of the magnetic field has a 

lesser effect on the overall heat transfer than on 
the local heat transfer. 

Equations (22) and (24) may be regarded as 
computational formulas for q and Q provided 
that q,, and Q, are known. These may be evalu- 
ated from equations (21) and (25) in conjunction 
with the 8;(O) values of Table 1. When equations 
(22) and (24) are used for Prandtl numbers 
other than those considered here, then results 
for q. and Q. are available in Refs. 11 and 12, 
the former being most useful in the range of high 
Prandtl numbers and the latter for the liquid 
metal range. 

It is interesting to see how the results from the 
present analysis relate to those of other investi- 
gations. As previously mentioned, the only 
reliable results currently available are those for 
the isothermal plate with a magnetic field which 
varies as x-li4 (i.e. the similarity case). ~~0~~ 
this is different from the uniform field case 
considered here, it still may be interesting to 
compare the heat transfer results. One of the 
possible comparisons is to look at the local 
heat transfer predictions under the condition 
that the local values of the magnetic parameter 
f in the two analyses (z in Ref. 5) are identical. 
The local equality of the 5 parameters at a given 
x can be achieved by arranging the magnetic 
field strengths to have identical values at that 
x.* Making use of the analogue computer 
solutions of Ref. 5 for the si~la~ty case and of 
equation (22) and Table I for the uniform field 
case, remarkably close agreement between the 
heat transfer predictions was found for all 
Prandtl numbers for 5 up to and including 
unity. This finding suggests that, at least for 
situations where the magnetic field has a 
moderate effect on heat transfer (-10-15 per 
cent), the local heat transfer reduction is not 
much influenced by the details of the upstream 
variation of magnetic field. For 5 values exceed- 
ing unity, the analogue computer solutions for 
the similarity case are available only for a 
Prandtl number of O-73. For these higher 6 
values, the agreement between the local heat 

* The field strength for the similarity case would there- 
fore be larger at smaller values of x. 
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transfer results from the two analyses is not so 
good, those from the present study being lower. 
This deviation may be due either to the 
differences in the upstream magnetic field varia- 
tion or perhaps, to the series truncation of 
equation (22). For the more important low 
Prandtl range, only approximate results are 
available for the similarity case for E > 1. 
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